• 9.03 MB
  • 72页

TiO2光催化材料在环境污染治理与新能源领域中的应用课件.ppt

  • 72页
  • 关注公众号即可免费下载文档
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
'TiO2光催化材料在环境污染治理与新能源领域中的应用长沙理工大学化学与生物工程学院夏畅斌2015.03.20 一、能源和环境问题二、TiO2光催化材料五、TiO2在其它领域中的应用三、TiO2光催化降解污染物四、TiO2在新能源领域中的应用 一、能源和环境问题 能源问题目前的能源结构与现状世界能源主要依赖不可再生的化石资源;我国能源结构面临经济发展和环境保护的双层压力;新能源的开发非常重要氢能作为理想的清洁的可再生的二次能源,其形成的关键是廉价的氢源;太阳能资源丰富、普遍、经济、洁净。太阳能光分解水技术可望获得廉价的氢气,还可就地生产。其其煤石油天然气其他中国石油煤天然气其他世界CxHy+O2H2O+CO2+SO2+NOx 能源问题 1、化石能源的不可再生性能源问题光合作用是唯一可利用CO2和水合成有机物的反应-地球上最伟大的反应煤、石油、天然气均是亿万年地球运动积累而成,不能循环使用,也不可能大量地人工合成,不可能回收。 2、资源分布的不均匀性石油:中东地区的剩余可开采储量约占世界总量的2/3。煤炭:美、俄、中占剩余可开采储量50%以上。天然气:中东和前苏联地区剩余可开采储量占70%以上。地区间政治、经济和军事冲突的主要原因能源问题 亿万年形成的化石燃料不过支持了约300年的现代工业文明!如果几十年里不能发展出替代能源,石油危机也就不可避免了。3、资源的短缺性在过去100年里,人类消耗了1420亿吨石油和2650亿吨煤,消费了世界56%的石油和60%以上的天然气,以及50%以上的重要矿产资源。《BP世界能源统计2007》的数据表明,全球石油储量可供生产40年,天然气和煤炭则分别可以供应65年和162年40年60年160年能源问题 4、能源分类一次能源(primaryenergy):自然存在的、可以直接利用的能源按产生方式不同:风能水力能太阳能地热能核能化石燃料能源问题二次能源(secondaryenergy):无法从自然界直接获取,必须经过一次能源的消耗才能得到的能源。如电力,汽油,煤气,蒸气等二次能源(secondaryenergy):无法从自然界直接获取,必须经过一次能源的消耗才能得到的能源。如电力,汽油,煤气,蒸气等二次能源(secondaryenergy):无法从自然界直接获取,必须经过一次能源的消耗才能得到的能源。如电力,汽油,煤气,蒸气等 按可否再利用:可再生能源(renewableenergy)—不断获得补充的能源,如,太阳能、生物质能、化学电源、氢能等不可再生能源—一旦开采枯竭,便不能再恢复。如煤、石油、核燃料等能源问题 5、能源材料:与能源开发、运输、转换、储存和利用等过程相关的材料.包括:储能材料、节能材料、能量转换材料和核能材料.能源问题 全球每年排放的CO2高达240亿吨之巨,几乎未经任何处理!1、温室效应全球气候在近几十年同步变暖,明显开始发生温室效应。环境问题 目前全球臭氧层正以每年2%至3%的速度削减,如果任其发展,在21世纪末平流层臭氧含量将降至目前的一半以上,届时人类将会面临一场空前的浩劫!南极上空的臭氧层空洞环境问题气候的变化,将对全球生态带来不可估量的影响。对于人类而言,灾难可能就出现在“后天” 2、大气污染环境问题全球每年排放SO22.9亿吨,NOx约为5千万吨,可吸入粉尘→酸雨、光化学烟雾、呼吸道疾病洛杉矶光化学烟雾甘肃沙尘暴酸雨效应 113重点城市空气质量级别环境问题 3、荒漠化环境问题森林破坏速度:每年1130万公顷,以0.35毁灭;荒漠化面积:~地球陆地1/4; 染料废水:是目前难降解的工业废水之一,其毒性大,色泽深,严重危害了生态环境。环境问题4、水体污染农药:我国每年农药产量大约20万吨,还从国外进口农药75万吨。通过喷施、地表径流及农药工厂的废水排入水体中。三峡库区的主要农药污染源依然是有机磷农药中“1605”、甲胺磷和有机氮农药中呋喃丹三个品种,这三个品种的排毒系数之和占总排毒系数的91.4%。生物多样性:每10年5~10%物种消失。Ref:国家环境保护总局.《长江三峡工程生态与环境监测公报》17 环境问题18 1、环境污染的全球化关注出路与对策半导体光催化是有希望的技术,可以大量的应用于环境保护,例如,空气净化,有毒废水处理,水的净化等。绿色合成化学,如光催化有机合成 人口和生活质量的提高,全球能源消耗每年仍以2%速度增加,唯一出路是新增部分由可再生能源补充。TW=1012W出路与对策2、寻求可再生、清洁能源 可再生能源的特点自然能(风能、太阳能等)的特点:周期性:一年四季,早晚变化分散性:总体能量巨大,单位面积能量密度很低;地域性:人口密集区往往自然能源不多高效地收集、转换、储存?出路与对策 光伏效应光电化学电池太阳能热利用HOOH222scMe光↔化学能转化出路与对策储存:化学相变储热、光化学储能;转换:光化学合成、太阳能光解水,热解制氢;利用:光电化学电池太阳能的利用: 太阳能电池太阳能光解水、甲醇、生物质制氢光催化环境净化光催化有机合成......出路与对策3、环境与能源问题的基本解决方案 二、TiO2光催化材料 光催化剂概述常见半导体材料的能带结构-1.00.01.02.03.0SrTiO3TiO2SnO23.2eV3.23.8WO32.8Ta2O5ZrO2Nb2O5H+/H2(E=0V)4.65.03.43.23.6ZnOZnSSiC3.0Evs.SHE(pH=0)/eVCdSO2/H2(E=1.23V)2.4绝大部分只能吸收不到5%的太阳光(紫外部分)! (1)、TiO2基材料改性:A、金属离子掺杂:在TiO2晶格中引入新电荷、形成缺陷或改变晶格类型,影响光生载流子的运动状况、调整其分布状态或改变能带结构,导致活性发生改变。过渡离子掺杂:过渡元素金属存在多个化合价,少量掺杂即可在其表面产生缺陷或改变其结晶度,成为光生载流子的浅势捕获阱,使TiO2呈现出p-n型光响应共存现象,延长电子与空穴复合时间降低复合概率。稀土、碱土元素离子掺杂:光催化材料种类纳米TiO2是当前最有应用潜力的光催化剂 B、非金属离子掺杂:非金属掺杂TiO2主要有:C,N,F、Cl,B,S等这些元素最外层电子上都有p轨道电子,易和O轨道电子混合,达到改变催化剂禁带宽度,使催化剂晶格缺陷,减小空穴-电子复合机会,提高光催化活性。结果表明:MO2-xXx对可见光的吸收虽有所提高,但掺杂元素易分解,实际应用存在困难。半导体耦合体系是将两种不同能隙的半导体结合在一起,解决催化剂的可见光吸收系数小和电子-空穴复合问题,但符合能级要求的窄能隙体系很少且易光腐蚀,因此也限制了耦合体系的应用。光催化材料种类 (2)、层状钛酸盐:K2Ti4O9及其柱撑改性产物为具有大的阳离子交换空间的层状结构。层状K2Ti4O9可通过柱撑过程在层状化合物层间引入合适的客体提高光催化活性。如SiO2柱撑K2Ti4O9沉积Pt以后,光催化活性可达2.8mmol/g·h。常用的柱撑材料有:TiO2、SiO2和Al2O3等。柱撑过程的结构变化主要表现在层间距有所增加,比表面积有所增大。K2La2Ti3O10结构示意图K2Ti4O9的结构示意图光催化材料种类 但层状复合氧化物也存在稳定性较差的缺点,需进一步完善使其结构优势得到更好的发挥。已报道的光催化剂中,普遍存在可见光利用率低等缺点。就光解水来说,关键在于提高光催化反应的活性及选择性,并将其激发波长扩展到可见光区,提高对太阳光的利用率。NiO/La2Ti2O7表现出优异的光催化效率。通过其他修饰如掺杂等处理,负载Ni、掺杂Cr,Fe的La2Ti2O7在可见光(λ>420nm)范围光催化分解水.光催化材料种类 (3)、复合半导体半导体复合的目的在于促进体系光生空穴和电子的分离,以抑制它们的复合,本质上可以看成是一种颗粒对另一种颗粒的修饰,其修饰方法包括简单的组合,掺杂,多层结构和异相组合,插层复合等。典型体系:CdS/TiO2,较新的体系有WO3/TiO2,CdS/ZnS/n-Si,CdS/钛酸盐的层状复合物。PbS,CdS,Ag2S,Sb2S3,WO3窄禁带半导体引入宽禁带TiO2中形成了复合光催化剂,由于这两种半导体的导带、价带的带隙不一致而发生交迭,从而提高光生电荷的分离率,扩展了TiO2的光谱响应范围。光催化材料种类 复合半导体CdS/TiO2光催化剂中的光激发示意图层间插入CdS复合物光催化反应的电子迁移模型近年主要发展了半导体与层状钙钛矿催化剂或大比表面多孔性光惰性物质复合。如:ZrO2/MCM-41,光分解产氢速率比复合前提高2.5倍。Inter.J.Hydro.Energy,2002,27:859。(3)、复合半导体光催化材料种类 传统可见光催化剂CdS和CdSe易被光腐蚀,不稳定也不环保,TiO2的可见光化研究较多,主要可见光化手段为表面贵金属沉积、掺杂(金属掺杂、非金属掺杂)、半导体复合、染料敏化等。(4)、可见光催化材料近年来可见光催化剂主要在寻求新型催化材料方面,主要包括:复合(硫、硒)氧化物、固溶体、染料敏化等。光催化材料种类 (4)、染料敏化半导体光敏化通过添加适当的光活性敏化剂,使其以物理或化学吸附于TiO2表面。无机敏化剂主要有:CdS,CdSe,FeS2,RuS2等。其中,CdS或CdSe与TiO2复合后能提高电子和空穴的分离效果,扩展光谱响应范围,有效地利用太阳能,从而提高光催化效率。纯有机染料:罗丹明、卟啉、叶绿素、曙红等。纯有机染料种类繁多,吸光系数高,成本低,一般都在TiO2表面发生化学吸附生成配合物,使用纯有机染料能节约金属资源。金属有机配合物和复合敏化剂:Gratzel等人用TiO2纳米晶多孔膜作基质,用联吡啶钌配合物作敏化剂,发现联吡啶钌配合物具有良好的吸收太阳光和进行光电转换的性能。在能量传输和电子传输都具有很强的光敏化作用。光催化材料种类 纳米TiO2光催化剂的表征XRDTEM光催化材料种类TG-DSCPL 三、TiO2光催化降解污染物 一般背景有毒废水:通常采用氧化塘,地下储水池和垃圾场等手段处理。其结果是使土壤,地下水和地表水被污染。污染通常涉及重金属,运载工具燃料,溶剂和去污剂以及有毒有害化学物质等。有毒有害有机物包括:溶剂,挥发性有机物,氯代有机物,二恶英,三氯乙烯(TCE),高氯酸乙烯(PCE),CCl4,HCCl3,CH2Cl2,P-氯苯,六氯环五烷二烯。为此,发展先进的分析化学,生物化学,物理化学技术消除大气,土壤,水中的有毒化学物质势在必行。 常规污染物方法包括:高温焚烧,活性污泥处理,消化,厌氧消化和一些常规物理化学处理。污染物的处理方法化学处理方法:1.化学氧化法:如,Fenton试剂和臭氧氧化法。2.树脂吸附法:大孔吸附树脂具有大比表面、容易再生、能够回收有机物等优点。3.乳状液膜分离:综合了固体膜分离法和溶剂萃取法的优点,特别适合于分离水溶液中呈溶解态的有机污染物。4.半导体光催化氧化法: 1972年,Fujishima在n-型半导体TiO2电极上发现了水的光催化分解作用,从而开辟了半导体光催化这一新的领域。1977年,发现光照条件下,TiO2对丙烯环氧化具有光催化活性,拓宽了光催化应用范围,为有机物氧化反应提供了一条新思路。此后,光催化技术在环保、卫生保健、有机合成等方面的应用研究发展迅速,半导体光催化成为国际上最活跃的研究领域之一。光催化除纯化空气和水外,在杀灭细菌和病毒类微生物、癌细胞失活,消除异味,产氢,固氮,捕获石油泄漏等方面也有广泛的应用。污染物的处理方法 利用纳米二氧化钛的光催化原理处理有机物,不仅可以直接利用太阳能,而且对有机物的处理比较彻底,不带来新的污染源污染物的处理方法 光催化的基本原理半导体材料在紫外及可见光照射下,将污染物短时间内完全降解或矿化成对环境无害的产物,或将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。半导体光催化氧化降解有机物的作用机理:O2+ec.b¯→O2·‾(1)H2O+h+→·OH+H+(2)·OH+·OH→H2O2(3)H2O2+O2·‾→·OH+OH-+O2(4) 氧化剂反应式氧化电位(V)羟基自由基·OH+H++e=H2O2.80臭氧O3+2H++2e=H2O+O22.07过氧化氢H2O2+2H++2e=2H2O1.77高锰酸根MnO4+8H++5e=Mn2++4H2O1.52二氧化氯ClO2+e=Cl-+O21.50氯气Cl2+2e=2Cl-1.30氧气O2+4e=2O2-1.23光催化的基本原理 A.无机化合物许多无机物在半导体表面可以实现光分解:包括:氨,叠氮化物,铬类,氰化物,卤化物,铁类,锰类,汞,硝酸盐和亚硝酸盐,一氧化氮和二氧化氮,氧气,臭氧,钯类,铂类,铑类,银类,磺酸类等。TiO2光催化降解应用范围B.有机化合物各种脂肪族和芳香族的氯化物通过在TiO2上的异相光氧化完全矿化为CO2和H2O和相关的无机物(如HCl,HBr,SO42-,NO3-)。目前详细研究过的光催化降解的有机污染物已达3000余种以上。污水中的除草剂、农药、染料、表面活性剂、烷烃、环烷烃、脂肪醇、羧酸、表面活性剂、臭味物质等均可用光催化技术进行有效处理。 半导体光催化降解部分有机污染物污染物质污染物质氯代苯酚氯代苯氯化物表面活性剂氯代烷烃硝基苯酚环磷酰胺EDTA吡啶DDT偶氮苯乙苯苯甲酸邻苯二酚马拉硫磷丁烯酮二甲苯苯乙酮烷基苯酚乳酸敌敌畏久效磷甲拌磷酚乙酸对硫磷罗明丹BTiO2光催化降解应用范围 TiO2催化性能的测试(降解苯酚)TiO2光催化降解应用实例 TiO2催化性能的测试(降解甲醛)(分子筛负载)TiO2光催化降解应用实例 可光催化降解的聚合物PS-TiO2,PVC-TiO2,PP-TiO2WeightlosscurveofpurePS,PS-TiO2andPS-G-TiO2compositefilmsunderUVilluminationinair.白色污染治理应用太阳光降解复合PS膜TiO2光催化降解应用实例 可光催化降解的聚合物PS-TiO2,PVC-TiO2,PP-TiO2WeightlosscurveofpurePS,PS-TiO2andPS-G-TiO2compositefilmsunderUVilluminationinair.白色污染治理应用太阳光降解复合PS膜TiO2光催化降解应用实例 能耗低,反应条件温和,在常温、常压进行,易操作。在紫外光和太阳光照射下就可以发生反应。反应速度快,有机污染物可在几分钟到数小时内被完全破坏,避免了聚环产物的生成。降解没有选择性,几乎能降解任何有机物。消除二次污染,矿化产物为无机离子,CO2,H2O。TiO2光催化反应催化剂易分离和重复使用。设备简单、光催化活性高,廉价,可连续工作,可氧化ppb级的污染物,适用于各种特殊设计的反应器体系。光催化降解技术优势 大都以汞灯为光源进行光催化降解,很少利用太阳光作为光源。未能采用现有工业原料来制备高效的光催化剂。悬浮型和负载型光催化反应器中催化剂和光源的利用率不高。研究不同系列有机物的降解规律和降解中间产物不够深入。光生电子-空穴对的转移速度慢,复合率较高,导致光催化量子效率低,反应转化率较低。通常只能用紫外光活化,太阳光利用率低。光催化降解技术不足 光催化降解技术努力方向1)寻求新型高效可见光响应光催化材料。从能带匹配、电子输运和表面结构着手,研究高效光催化材料的构建原则等。2)建立新型可见光光催化反应的理论基础。研究光催化物理化学过程中的光吸收、载流子激发、输运及其表面化学反应的基本规律,阐明新型高效可见光光催化反应的物理化学机制。3)发展新型可见光光催化材料的适用技术。利用可见光催化降解和矿化饮用水中微量污染物、室内空气中挥发性有机物以及高效分解水制氢中的光催化材料的高效利用、失活机制及再生方法,解决光催化材料实用化的技术基础问题。4)加强采用自然光源和连续处理的研究,探索最佳工艺条件。以经济合理与切实可行为原则逐步向生产和生活实际靠拢,为光催化技术在化学合成、污水处理、环境保护、太阳能利用等方面的实际应用奠定可靠基础。 四、TiO2在新能源领域中的应用 半导体光催化制氢Z-型体系光催化法悬浮体系光催化法光电化学体系制氢M.Gratzel,etal,Nature,1991,353:737;Nature,1998,395:583;S.U.M.Khan,etal,Science,2002,297:2243;Z.G.Zou,etal.,Nature,2001,414,625.4.1、光催化制氢体系光催化制氢 O24.2、Z-型制氢体系TiO2表面镀WO3薄膜:WO3吸收蓝光产生空穴,用于氧化水;DSSC-TiO2吸收透过的绿光和红光,产生具有高活性的导电电子还原氢。利用了整个可见光;克服了单一半导体的局限性;理论效率~47%,实际光转换效率已达到8%。光催化制氢 通过光电极受激发产生电子—空穴对作为氧化还原剂,参与电化学反应。光激发过程:TiO2+hh++e-光电极上氧化反应:H2O+2h+½O2+2H+对电极上阴极反应:2H++2e-H2总的光解水反应:H2O+h½O2+H24.3、光电化学催化制氢体系光催化制氢 多晶Si/TiO2光电极光分解水示意图PV/PEC器件光分解水示意图光催化制氢 1、光-热转换2、光电转换a)光伏电池b)光电化学电池c)染料敏化光电化学电池3、光-化学能转换太阳能利用光↔化学能转化FuelsCOSugarHOO222H2OOH22scMeSemiconductor/LiquidJunctions太阳能+水=氢?Photosynthesis 氢能经济的缘起1、“氢能经济”提出的背景环境问题日益严重;资源储备日渐匮乏;能源安全引起的冲突加剧; 2、氢能经济的构想ChryslerNatrium车(2001)氢能经济的缘起 美国:启动氢能发展计划生物质制氢,太阳能制氢欧洲:氢能电动汽车.生物质制氢,太阳能制氢日本:氢能电动汽车光生物制氢中国:氢能电动汽车生物质制氢,化石燃料制氢0.2L液H2/100km3、各国的氢能开发计划氢能经济的缘起 如何实现大规模地廉价制氢?—制氢如何经济、合理、安全地储存氢?—储氢如何高效率、低成本地利用氢?—利用氢氢能技术的难点 1.化石燃料制氢—目前主要的制氢方法成熟、廉价,但资源和环境问题并未解决2.生物质为原料制氢光合效率、水土面积、集中和储运成本等问题3.水分解制氢利用光化学、热化学和电化学方法制氢。然而,太阳能的收集、高品质热能和电能的产生方法,都是首先要解决的问题。制氢技术合成氨:50%石油精练:37%甲醇合成:8%全球年产氢:5000亿Nm3化石燃料制氢占96% 水分解制氢技术1、电解水制氢正极:2OH-H2O+½O2+2eφ=0.401V负极:2H2O+2e2OH-+H2φ=-0.828V理论分解电压1.23V,每1Kg氢电耗为32.9KWh。实际为~46.8KWh。(1)碱性水溶液电解2OH-H2O+½O2+2e2H2O+2e2OH-+H2采用Ni或Ni合金电极,效率~75%SPE电解水技术的主要问题是质子交换膜和电极材料的价格昂贵。(2)质子膜电解水发生器隔膜:全氟磺酸膜(Nafion)阴极:Pt黑阳极:Pt、Ir等的合金或氧化物 太阳光谱图设计在可见区内有强吸收半导体材料是高效利用太阳能的关键UVVisibleInfrared48%<5%λ6831.80eVλ4003.07eV2、光催化制氢的关键科技难题光催化制氢 +3.0+2.0+1.00.0-1.0BandgapH+H2H2OO2H+/H2O2/H2Oh+h+h+h+h+e-e-e-e-e-V/NHEWaterreductionWateroxidationhvValencebandConductionbandH2OH2+1/2O2G0=238kJ/mol(E=-Go/nF=-1.23eV)Chargeseparation/recombinationSeparationofreductionandoxidationControlofreversereaction光催化制氢 高稳定性、价廉;半导体的禁带宽度Eg要大于水的分解电压;能带位置要与氢和氧的反应电势相匹配:导带位置要负于氢电极的反应电势(EH+/H2+ηc),使光电子的能量满足析氢反应要求。价带位置应正于氧电极的反应电势(Vb+ηa),使光生空穴能够有效地氧化水。高效吸收太阳光谱中大多数的光子。及:光子的能量还必须大于半导体禁带宽度Eg:若Eg~3V,则入射光波长应小于400nm,只占太阳光谱很小一部分。3、半导体光催化制氢条件光催化制氢自1972年发现TiO2光解水后,利用太阳光驱动水的劈裂制H2(光解水)技术被认为是一项长期的、高风险、高回报的战略性研究课题。为实现太阳光直接驱动水的劈裂,要求光催化材料具有: 光催化制氢4、TiO2光解水析氧活性研究(溶胶-凝胶法制备) 光催化制氢4、TiO2光解水析氧活性研究(水解法制备) 光催化制氢4、TiO2光解水析氧活性研究(掺V) 光催化制氢4、TiO2光解水析氧活性研究(掺Nb) 太阳能的开发利用是人类进入21世纪必须解决的难题,而研制在可见光区高效稳定的光催化材料是今后利用太阳能制氢的关键内容。应重视和加强光催化分解水的基础理论研究,此外,应建立光催化分解水循环反应体系,重视光催化分解水制氢设备的研究。光催化制氢 五、TiO2在其它领域中的应用 ThankYou!'