- 599.50 KB
- 26页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
'2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校:参赛队员:1.2.3.指导教师或指导教师组负责人:日期:年_月_日赛区评阅编号(由赛区组委会评阅前进行编号):
2009高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):
水资源短缺风险综合评价摘要水资源短缺风险主要是指由于来水和用水两方面存在不确定性,使区域水资源系统发生供水短缺的可能性以及由此产生的损失。对于问题一,首先搜集影响用水和来水有关的指标的数据,对搜集到的数据采用主成分分析的方法,将主成分因子的权重与各指标的成分系数组合得出一个可以反应各个指标对水资源短缺风险影响大小的数值。通过该数值比较得出北京市水资源短缺风险的主要影响因素分别是:人口规模,生产总值,人均生产总值,污水处理率,第三产业及生活等其它用水等。对于问题二,将问题一中得出的反应各个指标对水资源短缺风险影响大小的数值,与所对应的标准化后的指标相乘,便可得到对各年风险综合评价的函数。再通过对数值计算划分为五个风险等级。再根据此等级划分标准,求出每一年的风险等级。由此根据问题一中各影响因素的主次程度,得出降低风险的调控方法。对于问题三,我们分别采用时间序列分析、线性回归、灰色预测等方法分别预测出2009年和2010年各指标的数值。并将该数值标准化后代入综合评价的函数方程,得出未来两年依旧属于高风险。对于问题四,我们根据前面得出的结论,以北京市水行政主管部门为报告对象,写了一份报告,提出相应的尽量减小水资源短缺风险的措施。关键词:主成分分析时间序列灰色预测线性回归指数拟合预测
一、问题重述水资源,是指可供人类直接利用,能够不断更新的天然水体。主要包括陆地上的地表水和地下水。风险,是指某一特定危险情况发生的可能性和后果的组合。水资源短缺风险,泛指在特定的时空环境条件下,由于来水和用水两方面存在不确定性,使区域水资源系统发生供水短缺的可能性以及由此产生的损失。近年来,我国、特别是北方地区水资源短缺问题日趋严重,水资源成为焦点话题。但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。根据题目提供的数据以及搜集到的资料,需要解决以下问题:1.评价判定北京市水资源短缺的主要风险因子是什么?建立一个模型得出个风险因子对水资源短缺的影响程度。2.建立一个数学模型对北京市水资源短缺风险进行综合评价,做出风险等级划分,并陈述理由。对主要风险因子,如何进行调控,使得风险等级降低?3.对北京市未来两年水资源的短缺风险进行预测,并提出应对措施。4.通过前面得出结论,以北京市水行政局主管部门为报告对象,写一份建议报告。二、问题分析针对问题一:可以用进行主成分分析,先提取出各主因子的贡献率,再与各指标在主因子中的成分系数进行组合,可得出各因素的相对影响大小。针对问题二:本题主要是对北京市水资源短缺风险量化,依此作出风险等级划分和提出调控建议。首先要构造风险评价函数,再制定标准。风险评价函数可以用问题一中的结论推出。函数构造出来后,把每年的各个标准化后的指标值代入,就可以求出每年的风险值。相应的,把风险值分为五个区间,依此得出历年的风险等级。并通过改变问题一中的主要因子来尽量减小风险。针对问题三:要求对未来两年的水资源短缺风险进行预测。因为第二题已经给出了风险评价函数,所以我们需要用不同方法预测出未来两年的各个指标的值,再代入综合评价函数就可得出未来两年的风险值。并依照前两题的结论,提出相应措施。对于问题四,向主管部门报告我们得出的影响水资源短缺风险的主要因子,以及我们预测北京市未来两年的风险等级,根据等级的高低决定采取多大力度的措施。。三、模型假设1、未来几年北京市不会发生洪灾或者旱灾,不会兴建大型的水利工程。2、未来几年北京市人口和经济等方面不会发生反常的变化。3、由于收集资料量有限,我们未考虑的因素不会对我们所建的模型有所影响。
四、符号说明
E主因子的累计贡献率。主成分分析中提取的第一个主因子。主成分分析中提取的第二个主因子。主成分分析中提取的第三个主因子。历年常住人口的标准化数值。历年总用水量的标准化数值。历年农业用水的标准化数值。历年工业用水的标准化数值。历年第三产业及生活等其它用水的标准化数值。历年水资源总量的标准化数值。历年生产总值的标准化数值。历年人均生产总值的标准化数值。历年年降水量的标准化数值。历年污水处理率的标准化数值。t年农业用水量t年年降水量t年水资源总量t年污水处理率t年第三产业及生活等其他用水量t年工业用水量pAR模型的阶数AR模型系数,.
农业用水,年降水量,水资源总量,污水处理率,第三产业及生活等其他用水,工业用水的白噪声,总用水量R总人口GDP人均GDP五.模型建立与问题求解一、问题一:根据附表中信息,要求对北京市水资源短缺风险的主要风险因子进行判定,本文采用的是主成分分析法,主成分分析法是指标筛选最常用的方法之一,该方法的本质目的是对高位变量系统进行最佳综合与简化,同时客观地确定各个指标的权重,从而筛选出权重大的指标,确定主要风险因子。根据题目所提供的数据以及搜集到的资料,我们确定的影响水资源短缺的因子有:常住人口,总用水量,农业用水,工业用水,第三产业及生活等其它用水,水资源总量,生产总值,人均生产总值,年降水量,污水处理率。(历年具体数据见附录)利用SPSS软件进行主成分分析,由下表一知前三个特征值为6.787,1.797,0.774,累计贡献率E=(6.787+1.797+0.774)/10=93.585%>85%,从而对前三个主成分进行综合分析比较好。解释的总方差成份初始特征值提取平方和载入合计方差的%累积%合计方差的%累积%16.78767.87367.8736.78767.87367.87321.79717.97085.8431.79717.97085.8433.7747.74193.585.7747.74193.5854.3853.84897.4335.1531.53598.9676.074.73599.7037.018.17699.8788.011.11299.9919.001.009100.000107.842E-67.842E-5100.000提取方法:主成份分析。表一解释的总方差
成份得分系数矩阵成份123人口规模.144.026.119总用水量-.099-.288.588农业-.106-.280.577工业-.131.060-.298第三产业.135.002.125水资源总量-.071.413.508生产总值.142.022.261人均.144.012.224年降水量-.061.469.273污水处理.142-.007.209提取方法:主成分分析法。表二成分得分系数矩阵由表一中特征值得主成分一占的权重为,主成分二占的权重为主成分三占的权重为由表二中各风险因子在各主成分中的得分系数乘以各主成分的权重可得风险因子对水资源短缺的影响大小如下表:风险因子影响大小人口规模0.1196总用水量-0.0799农业用水-0.0844工业用水-0.06040.10893
第三产业及生活等其它用水水资源总量0.0673生产总值0.1287人均生产总值0.1253年降水量0.0664污水处理率0.119表三各风险因子影响大小因此,影响水资源短缺风险的主要风险因子有:人口规模,生产总值,人均生产总值,污水处理率,第三产业及生活等其它用水。二、问题二:对于问题二,同样使用主成分分析的方法。由问题一中的各个主成分的权重可得水资源风险的综合评价指标:其中分别为主成分分析中的主成分因子。Y为综合评价的指标。对于而言由成分得分系数矩阵可得:其中为历年各个指标的标准化值。则综合评价指标为:Y=
用SPSS标准化数据后代入上式计算得各年综合风险如下:年份1979198019811982198319841985198619871988评价指标-0.60-1.03-0.96-0.77-0.79-0.58-0.23-0.30-0.06-0.41年份1989199019911992199319941995199619971998评价指标-0.70-0.33-0.26-0.50-0.53-0.13-0.11-0.15-0.05-0.27年份1999200020012002200320042005200620072008评价指标-0.07-0.220.30-0.490.680.871.031.201.461.77表四各年综合风险由此将风险分为五个等级:高风险较高风险中风险较低风险低风险表五风险等级依此求得各年风险如下:等级年份()高风险20042005200620072008较高风险20012003中风险19851987199119411994199519961997199819992000较低风险19791984198619881990199219932002低风险19801981198219831989表六各年等级归类通过以上可以看出,近几年北京市水资源短缺风险一直在加大。通过第一题对影响风险的因子判断可以看出,由于近几年北京市人口规模不断增大,经济发展越来越迅速,导致水资源短缺风险加大。为降低风险北京市应当控制北京市的人口规模,尽量降低增长的趋势,加强对人口的管理,提倡人们节约用水。适当的外迁大型工业单位以便降低工业用水量。三、问题三:1.时间序列模型:时间序列模型是用随机过程理论和数理统计方法研究随机数据序列的规律的模型。本文利用时间序列自回归模型(AR模型),对农业用水、年降水量、水资源总量、污水处理率、第三产业及生活等其他用水以及工业用水进行了预测。AR模型的基本形式:
在序列中,描述序列某一时刻t和前p个时刻序列之间的关系表示为:其中序列是白噪声且和前一时刻序列不相关,则这样的模型称为一阶自回归模型,记为AR(p)。在具体工作中,所要做的便是确定阶数p的值,并且估计参数及的方差。利用MATLAB软件(具体程序见附录)的p=3,时间序列模拟的曲线与原始曲线的比较见下图。图一预测农业用水与原始农业用水及其误差相关系数
图二预测年降水量与原始年降水量及其误差相关系数图三预测水资源总量与原始水资源总量及其误差相关系数
图四预测污水处理率与原始污水处理率及其误差相关系数图五预测第三产业及生活等其他用水及其误差相关系数
图六预测工业用水与原始工业用水及其误差相关系数由MATLAB程序运行结果可得AR模型的系数,于是可得到如下AR表达式:农业用水:年降水量:水资源总量:污水处理率:第三产业及生活等其他用水:工业用水:其中表示t年农业用水,表示t年年降水量,表示t年水资源总量,表示t年污水处理率,表示t年第三产业及生活等其他用水,表示t年工业用水。利用以上公式可以预测1999-2010年农业用水、年降水量、水资源总量、污水处理率、第三产业及生活等其他用水以及工业用水,得下表:年份真实值预测值相对误差
199918.4517.260.064499200016.4915.540.057611200117.416.180.070115200215.514.60.058065200313.812.80.072464200413.512.530.071852200513.212.360.063636200612.811.980.064063200712.411.60.06451620081211.230.064167200911.22201010.49表七农业用水真实值与预测值年份真实值预测值相对误差1999266.9419.4-0.571382000371.1396.9-0.069522001338.9316.60.0658012002370.4343.30.0731642003444.9380.10.1456512004483.5425.50.1199592005410.7418.1-0.018022006318.0362.5-0.139942007483.9397.90.1777232008626.3491.80.2147532009463.62010491.1表八年降水量预测值与真实值年份真实值预测值相对误差199914.2222.4-0.57525200016.8618.9-0.121200119.216.40.145833200216.116.3-0.01242200318.416.80.086957200421.418.20.149533200523.220.40.12069200624.522.10.097959200723.822.50.054622200834.227.10.207602200927.1201027.2表九水资源总量真实值与预测值
年份真实值预测值相对误差19990.250.2240.10420000.3940.3620.08121820010.420.3840.08571420020.450.4040.10222220030.5010.4510.099820040.5390.4850.10018620050.6240.5630.09775620060.7380.670.09214120070.7620.6860.09973820080.7890.7040.10773120090.70420100.622表十污水处理率真实值与预测值年份真实值预测值相对误差199912.716.8-0.32283200013.3915.6-0.16505200112.314.4-0.17073200211.613.7-0.18103200313.612.60.073529200413.411.10.171642200514.511.70.193103200615.312.60.176471200716.611.90.283133200817.911.40.363128200915.8201014.9表十一第三产业及生活等其他用水真实值与预测值年份真实值预测值相对误差199910.5610.30.024621200010.5210.20.03041820019.29.10.0108720027.57.7-0.0266720038.48.20.0238120047.77.50.02597420056.86.8020066.26.2020075.85.740.01034520085.25.2020095.17
20105.07表十二工业用水真实值与预测值2.灰色系统预测模型预测总用水量:对总用水量的预测采用灰色系统预测模型:首先对已知的各年总用水量做一次累加,生成序列;其中,。由于为指数增长规律,可知满足下列一阶线性微分方程。。记待定,经离散化处理,得。使用最小二乘法求出的近似解:,将近似解代入原微分方程:在Matlab平台上编制灰色数列模型的函数,把总用水量序列输入程序中,得出各年的总用水量预测值,结果和误差如下:年份总用水量(亿立方米)实际预测(亿立方米)残差误差(%)199941.7138.57593.13417.51200040.438.24582.15425.33200138.937.91840.98162.52200234.637.59392.99398.65200335.837.27221.47224.11200434.636.95322.35326.8200534.536.63692.13696.19
200634.336.32342.02345.9200734.836.01251.21253.48200835.135.70430.60431.72表十三总用水量真实值与预测值通过误差分析可以看出,真实值与预测值相差不大,因此可以预测未来两年的总用水量。并以此方程预测出2009年和2010年的总用水量分别为:35.3988亿立方米和35.0958亿立方米3.线性回归预测总人口将各年总人口作为Y轴,时间作为X轴的人口总量关于时间的图像如下:所以构造人口关于时间的一元线性函数:R=at+b通过MATLAB编程可求出:R=26.0311t+799.9476将时间变量代入上面的R函数可得下表:年份真实值预测值相对误差19991257.21346.60.0711120001363.61372.60.006620011385.11398.70.00981920021423.21424.70.00105420031456.41450.70.00391420041492.71476.80.01065220051538.01502.80.02288720061581.01528.80.03301720071633.01554.80.047887
20081695.01580.90.06731620091606.920101632.9表十四1999-2008年总人口真实值与预测值通过误差分析可以看出预测比较合理。4.指数模型预测GDP和人均GDP通过对数据分析,对GDP和人均GDP采用指数模型进行预测,公式分别为:其中分别为GDP和人均GDP的数值,t为时间。其它为待求的参数。通过MATLAB编程得到各参数分别如下:m=0.1389n=0.1013将时间变量代入公式可得下表:年份真实值预测值相对误差199921397212570.006543200024122242680.006053200126998276170.022928200230840313390.01618200334892354730.016651200441099400600.02528200545444451470.006536200650407507880.007558200758204570390.020016200863029639660.014866200971638201080136年份真实值预测值相对误差19992677.627480.02629220003161.032160.017420013710.537550.01199320024330.443750.01029920035023.850880.01277920046060.359080.02513120056886.368510.00512620067861.079350.00941420079353.391810.018421200810488.0106130.011918200912259201014151表十五GDP真实值与预测值表十六人均GDP真实值与预测值通过以上预测我们得出了2009年和2010年的十个指标的预测值,将该值标准化并带入在问题二中求出的评价函数我们得出,2009年水资源短缺风险指标为1.3394。2010年水资源短缺风险指标为1.3985。可看出09和10年风险虽有所降低,但是仍处于高风险期。北京市应该加强外来水源的调入,如南水北调,做好应对水资源紧缺的准备。四、问题四:我们通过主成分分析法计算出影响缺水风险的主要因子,并建立了水资源短缺风险等级评分标准,得出北京市近年处于高风险的水资源短缺状况。在采取以往的水资源控制手段的条件下,经过对未来两年各个指标的预测,发现到北京市未来几年的水资源短缺仍会处于一种高风险状态。可见,解决水资源短缺问题依然严峻。
为了能更高效地解决水资源短缺问题,分析造成水资源短缺的风险因子,通过主成分分析法判断得到主要影响因素为人口规模,生产总值,人均生产总值,污水处理率,第三产业及生活等其它用水。为此我们提出了如下有效缓解北京水资源短缺的措施:1.控制北京市人口规模并加强民众和单位的节水意识,另一方面有关部门需要采取一些有力的甚至是强制性的节水措施。例如,继续努力提高用水效率,缩小与世界平均用水水平的差距;鼓励清洁生产、节水生产,实行定额用水制度;还有,要根据各地的不同情况,适时、适度地提高水价,逐步改变水价格背离其价值的情况。2.在优先保证城市生活和重点工业供水的前提下,在无法满足需水时,可以适度压缩农业用水的用水量。加强工业、农业节水力度,调整产业结构,大力发展节水型工业、农业。把节约用水纳入城市发展规划,纳入产品结构调整计划和技术及企业改造计划,使在城市和工业部门中逐步做到计划用水、合理用水和科学用水。3.建立外来水源、本地水源相互协调的供水网络,实现本地地表水源与外来水源的联合调蓄、地下水与地表水的联合调蓄,提高北京城市供水安全保证程度,支持城市可持续发展。4.继续开展污水资源化、雨洪利用的研究和应用。把城市污水排放规划管理、污水处理厂建设、再生污水利用三个环节综合起来,全面规划考虑,实现污水资源化。收集和利用城市雨洪,既可防治雨洪灾害,缓解城市雨洪压力;同时又增加了可用水资源,并可通过回灌补给蓄养地下水。5.为保证城市供水安全,应科学地适度增加地下水开采量,合理开发利用。对已确定的应急供水水源地应尽快投入勘探和开发工作,对其它地区继续开展调查工作,寻找新的后备应急水源。六、模型评价与推广本文首先利用主成分分析法很好的对风险因子进行了综合和简化,并且客观的确定了各指标的影响大小。对于问题二将风险量化,使水资源短缺风险能够很好地定量描述;但是风险等级的划分有一定的主观因素,与现实风险会存在一定的误差。在对风险进行预测时,根据各指标的不同分布采取了不同的预测方法,使得各指标误差尽量小。但是不同的方法预测,也都存在一定的误差,最后将各指标代入评价函数预测出来的风险与实际也有一定误差。综合评价模型可以通过对事物的各个因素的综合考虑,对事物的的优劣作出科学评价。但是应用范围有一定的局限性。
七、参考文献[1]2009年北京市统计年鉴.[2]赖国义,陈超,SPSS17.0中文版常用功能与应用精讲,北京,电子工业出版社,2010.[3]张善文,雷英杰,冯右前,MATLAB在时间序列分析中的应用,西安电子科技大学出版社,2007.[4]陈永胜,多元线性回归建模以及MATLAB和SPSS求解,绥化学院学报.[5]张延安,肖桂斌,,主成分分析综合评价方法及实证分析,辽宁经济管理干部学院学报,2001年第二期.[6]李恒凯,王秀丽,刘德儿,基于GM(1,1)的水资源预测模型库系统设计,人民黄河报2010年7月第32卷7期.[7]白雪梅,赵松山,对主成分分析综合评价方法若干问题的探讨,《统计研究》1995年第6期.
附录1.1979-2008年各影响因子数据:年份常住人口(万人)总用水量(亿立方米)农业用水(亿立方米)工业用水(亿立方米)第三产业及生活等其它用水(亿立方米)1979897.142.9224.1814.374.371980904.350.5431.8313.774.941981919.248.1131.612.214.31982935.047.2228.8113.894.521983950.047.5631.611.244.721984965.040.0521.8414.3764.0171985981.031.7110.1217.24.3919861028.036.5519.469.917.1819871047.030.959.6814.017.2619881061.042.4321.9914.046.419891075.044.6424.4213.776.4519901086.041.1221.7412.347.0419911094.042.0322.711.97.4319921102.046.4319.9415.5110.9819931112.045.2220.3515.289.5919941125.045.8720.9314.5710.3719951251.144.8819.3313.7811.7719961259.440.0118.9511.769.319971240.040.3218.1211.111.119981245.640.4317.3910.8412.219991257.241.7118.4510.5612.720001363.640.416.4910.5213.3920011385.138.917.49.212.320021423.234.615.57.511.620031456.435.813.88.413.620041492.734.613.57.713.4
20051538.034.513.26.814.520061581.034.312.86.215.320071633.034.812.45.816.620081695.035.1125.217.9年份水资源总量(亿方)生产总值(亿元)人均生产总值(万元)年降水量污水处理率197938.23120.11358718.40.102198026139.11544380.70.094198124139.21526393.20.108198236.6154.91671544.40.109198334.7183.11943489.90.102198439.31216.62262488.80.1198538257.12643721.00.1198627.03284.92836665.30.089198738.66326.83150683.90.077198839.18410.23892673.30.074198921.55456.04269442.20.066199035.86500.84635697.30.073199142.29598.95494747.90.066199222.44709.16458541.50.012199319.67886.28006506.70.031199445.421145.310240813.20.096199530.341507.712690572.50.194199645.871789.214254700.90.212199722.252075.616609430.90.22199837.72376.019118731.70.225199914.222677.621397266.90.25200016.863161.024122371.10.394200119.23710.526998338.90.42200216.14330.430840370.40.45200318.45023.834892444.90.501200421.46060.341099483.50.539200523.26886.345444410.70.624200624.57861.050407318.00.738200723.89353.358204483.90.762200834.210488.063029626.30.789年份人口规模总用水量农业用水工业用水第三产业及生活等其它用水
1979-1.305780.467560.788350.91006-1.293181980-1.275091.913892.037150.72254-1.153671981-1.211581.452661.99960.23497-1.310311982-1.144231.283731.544160.76004-1.256461983-1.080291.348271.9996-0.0682-1.207521984-1.01635-0.077190.406360.91194-1.379571985-0.94815-1.66018-1.506831.79455-1.288281986-0.7478-0.741520.01785-0.48388-0.605461987-0.66681-1.80444-1.578660.79755-0.585881988-0.607130.374550.430850.80692-0.796361989-0.547450.794030.827530.72254-0.784121990-0.500570.125910.390040.2756-0.639721991-0.466460.298630.546750.13808-0.544271992-0.432361.133780.09621.266360.324551993-0.389740.904120.163131.19447-0.015641994-0.334321.027490.257810.972570.1752619950.20320.83958-0.003370.725660.5178919960.23858-0.08478-0.065410.09433-0.0866119970.15589-0.02594-0.2009-0.111950.3539219980.17976-0.00506-0.32006-0.193210.6231319990.22920.23789-0.14703-0.280730.745520000.68275-0.01076-0.46698-0.293230.9143720010.7744-0.29547-0.31843-0.705780.647620020.93681-1.11164-0.62859-1.23710.4762920031.07833-0.88387-0.9061-0.955820.9657620041.23306-1.11164-0.95507-1.17460.9168220051.42616-1.13062-1.00405-1.455881.1860320061.60946-1.16858-1.06934-1.643411.3818220071.83111-1.07368-1.13464-1.768431.6999820082.0954-1.01674-1.19994-1.955952.01814年份水资源总量生产总值人均GDP年降水量污水处理率19790.95227-0.78775-0.867011.21368-0.638781980-0.34214-0.78135-0.85694-1.02449-0.672421981-0.55382-0.78132-0.85792-0.94164-0.6135519820.77975-0.77604-0.850060.06047-0.6093419830.57866-0.76655-0.83533-0.30074-0.6387819841.06658-0.75527-0.81806-0.30803-0.6471919850.92793-0.74164-0.797421.23092-0.647191986-0.23313-0.73229-0.786970.86175-0.6934519870.99778-0.71819-0.769970.98503-0.7439119881.05282-0.69012-0.729780.91477-0.75653
1989-0.81313-0.67471-0.70937-0.61688-0.7901719900.70143-0.65963-0.689551.07384-0.7607319911.38198-0.62662-0.643031.4092-0.790171992-0.71893-0.58954-0.590820.04125-1.017261993-1.0121-0.52994-0.50699-0.1894-0.9373619941.71325-0.44275-0.3861.84199-0.6640119950.1172-0.32079-0.253320.2467-0.251919961.76088-0.22606-0.168621.0977-0.17621997-0.73904-0.12968-0.04109-0.69178-0.1425619980.89618-0.028590.094791.30183-0.121531999-1.588930.07290.21821-1.77872-0.01642000-1.309510.235580.36579-1.088110.589162001-1.061850.420490.52154-1.301520.69852002-1.389950.62910.7296-1.092750.824652003-1.146520.862440.94904-0.598991.039122004-0.8291.211251.28519-0.343161.198922005-0.638491.489211.52049-0.825651.556372006-0.50091.817221.78927-1.440042.035772007-0.574992.319412.21152-0.340512.136720080.525742.701262.472820.603272.250242.时间序列分析的程序:a=lpc(x,3)estx=filter([0-a(2:end)],1,x);e=x-estx;[acs,lags]=xcorr(e,"coeff");subplot(121);plot(1:30,x,1:30,estx,"-.");title("原始信号");xlabel("年份1979+");ylabel("农业用水");grid;legend("原始信号","LPC估计")subplot(122);plot(lags,acs);title("预测误差的自相关函数");xlabel("延迟");ylabel("归一化值");grid;3.灰色系统预测程序:functionkiee(x,t);%初始数据序列%-------灰色预测-------------%%t表示原始数据后的预测数据步长n=length(x);x1=[];%累加序列x1(1)=x(1);fori=1:1:n-1x1(i+1)=x1(i)+x(i+1);%累加值
end;%以上,作一阶累加得x1c=[];fori=1:1:n-1c(i)=-1/2*(x1(i)+x1(i+1));end;B=[c",ones(n-1,1)];Y=x(2:n);Y=Y";%以上,构造矩阵B和Yb=B"*B;d=B";d1=d*B;d2=d*Y;c=d1d2;a=c(1);u=c(2);%以上,利用最小二乘法解参数a和ux0=[];x0(1)=x(1);fori=1:1:n+tx0(i+1)=(1-exp(a))*(x(1)-u/a)*exp(-a*i);end;%累减还原得到灰色预测模型x0xq=x0(1:n);d1=(x-xq)./x.*100;%分析误差;相对误差(%):(实际值-预测值)/实际值*100w=d1;W=[];fori=1:1:nifw(i)>=0W(i)=w(i);elseW(i)=-w(i);end;end;sum=0;fori=1:nsum=sum+W(i);endda1=sum/n;%平均误差:各相对误差的绝对值的和/个数。x,xq,x0,d14.线性回归的程序:b=[897.1904.3919.2935.0950.0965.0981.01028.01047.01061.01075.01086.01094.01102.01112.01125.01251.11259.41240.01245.61257.21363.61385.11423.21456.41492.71538.01581.01633.01695.0];a=1:1:30;x=[ones(30,1)a"];
[b,bint,rint,stats]=regress(b",x)5.指数模型回归求解GDP和人均GDP程序:clearall;closeall;x=1:1:30;y=[120.1139.1139.2154.9183.1216.6257.1284.9326.8410.2456.0500.8598.9709.1886.21145.31507.71789.22075.62376.02677.63161.03710.54330.45023.86060.36886.37861.09353.310488.0];myfunc=inline("beta(1)+beta(2)*exp(beta(4)*x)+beta(3)*exp(-beta(4)*x)","beta","x");beta=nlinfit(x,y,myfunc,[0.50.50.50.5]);a=beta(1),k1=beta(2),k2=beta(3),m=beta(4)xx=min(x):max(x);yy=a+k1*exp(m*xx)+k2*exp(-m*xx);plot(x,y,"o",xx,yy,"r")clearall;closeall;x=1:1:30;y=[135815441526167119432262264328363150389242694635549464588006102401269014254166091911821397241222699830840348924109945444504075820463029];myfunc=inline("beta(1)+beta(2)*exp(beta(4)*x)+beta(3)*exp(-beta(4)*x)","beta","x");beta=nlinfit(x,y,myfunc,[0.50.50.50.5]);a=beta(1),k1=beta(2),k2=beta(3),m=beta(4)yy=a+k1*exp(m*x)+k2*exp(-m*x);plot(x,y,"o",x,yy,"r")'
您可能关注的文档
- 《爱护水资源》教学设计
- 对水资源短缺风险的探讨
- 承德市双滦区水资源紧缺状况
- 水资源学i-《水利水能规划》课程设计任务书2012
- 《国电织金发电厂2×600mw级新建工程水资源论证报告书》审查意见的
- 长沙县水资源情况初步探究13.doc
- 内蒙古乌珠穆沁草原、乌拉盖湿地水资源损伤报告
- 初三化学第四单元课题1 爱护水资源学案(附答案)
- 初二地理 水资源测试题带答案
- 2014高二化学选修1-1 4.2爱护水资源课件及练习题(有答案)
- 水资源的研究报告
- 水资源管理信息系统使用指南
- 水资源短缺风险综合评价报告
- 宁夏伊品生物科技股份有限公司锅炉烟气脱硫脱硝改造及废水资源综合利用项目.doc
- 《水资源的合理利用》教学设计
- 《海水资源的开发利用》教学设计
- 《21世纪初期首都水资源可持续利用规划》
- 水资源短缺风险综合评价