- 272.50 KB
- 22页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
第4章:生态工程及全生态系统原理与方法(2学时)\n1、基本概念一、核心原理1、整体性原理(整体论和还原论的争论):生态工程是以整体观为指导,在系统水平上来研究,整体调控为处理手段。2、协调和平衡原理:由于生态系统长期演化与发展的结果,在自然界中任一稳态的生态系统,在一定时期内均具有相对稳定而协调的内部结构和功能。生态系统在一定时期内,各组分通过相生相克、转化、补偿、反馈等相互作用,结构与功能达到协调,而处于相对稳定态,这种稳定态就是一种平衡。包括结构平衡、功能平衡、收支平衡。\n3、自生原理(self-resiliency):包括自我组织(self-organization)、自我优化(self-optimum)、自我调节(self-regulation)、自我再生(self-regerenation)、自我繁殖(self-reproduction)和自我设计(self-design)等一系列机制。自组织或自我设计:是系统不藉外力自己形成具有充分组织性的有序结构,也即生态系统通过反馈作用,依照最小耗能原理,建立内部结构和生态过程,使之发展和进化的行为,这一理论即为自组织理论。\n自我优化:是具有自组织能力的生态系统,在发育过程中,向能耗最少、功率最大、资源分配和反馈作用分配最佳的方向进化的过程。自我维持:是指生态系统是直接或间接地依赖太阳能的系统,因而是一个自我维持的系统。自我调节:是属于自组织的稳态机制,其目的在于完善生态系统整体的结构与功能。\n4、循环再生原理:物质循环和再生原理:多层次分级利用原理:物质再生循环和分层多级利用,不仅意味着在系统中通过物质、能量的迁移转化,去除一些内源和外源的污染物;还要利用这特有的工艺路线,达到尽量高产、低耗、高效地生产优质产品;还要做到变废为宝,保证转化后的一些物质输出的可能性,同步收到生态、经济和社会三方面效益。再生循环与分层多级利用物质是系统内耗最省、物质利用最充分、工序组合最佳最优工艺设计的基础。\n二、生物学原理物种共生原理:生态位原理:食物链原理:物种多样性原理:物种耐性原理:景观生态原理:耗散结构原理:限制因子原理:环境因子的综合性原理:\n三、工程学原理结构的有序性原理:系统的整体性原理:功能的综合性原理:\nWhole-ecosystemstudiesareinsituecologicalstudiesandexperimentsofsuchaspatialandtemporalscaleastoincludemostifnotallprocessesoftheecosystem.Principlesofself-organizationandself-designarekeytowhole-ecologicalfunctionandoftendonotoccurasvibrantlyorconclusivelyatsmallerscaleexperiments.Ecologicalfeedbackcausedbyorganisms(e.g.,beavers,plantsthatmanagehydrology,ecosystemengineers,top-downcontrol),pulsescausedbyeventssuchasfireandfloods,andemergentecosystempropertiescausedbyhumanwastes,recycling,andhydrologicmodificationaredifficultifnotimpossibletobeproperlystudiedinsmall-scaleexperiments.\nLarge-scalewhole-ecosystemstudieswerepioneeredinthe1960sand1970sbyH.T.OdumandcolleagueswithlargedropnetsinTexascoastalbays,rainforestsenclosuresinPuertoRico,createdcoastalpondsinNorthCarolina,andsewageapplicationtocypressswampsinFlorida.ThestudyinFloridainvestigatedeffectsofwastewateradditionstowetlandfunctionincypressdomesbutunexpectedfireintheexperimentalarealedtoadaptiveresearchandthestudyoffireinfieldresearchandmodels.Morerecentlywehavebeenengagedinwhole-ecosystemexperiments,partiallyinspiredbytheworkofOdum,atcreatedwetlandsinnortheasternIllinoistoinvestigateeffectsofwaterturnoveronecosystemfunctionandinOhiotoprovideinsightonthelong-rangelarge-scaleeffectsofhydrologyandmacrophyteplantingonecosystemfunction.\nWehavealsocarriedoutmajorecosystem-scalestudiesincoastalLouisiana,investigatingthevalueoftheseecologicalsystemsintreatingwastewaterandrestoringlostlandscapeincoastalLouisiana.ThesestudiesintheMidwestandMississippideltaformthebasisofdeterminingdesignstandardsoncreatingandrestoringwetlandsintheMississippiRiverBasintoreducetheGulfofMexicohypoxiaandregainmanylostecosystemfunctionsoveralargepartofNorthAmerica.\nObtainingdataonbiomassrepresentativeofthelargesystemsofnaturesuchasforestsandseasisaverydifficulttaskthathasoccupiedecologicalresearchfor50yearswiththousandsofmethodsandvaryingresults.Whensmallspotsarestudiedorsmallsamplestaken,thedataarenotrepresentativebecauseofthelargestatisticalvariationthatischaracteristicofmostecosystems.Effortstosamplelargesectionsofsystemsarelaboriousandexpensive.From:H.T.Odum(1971,Environment,Power,andSociety)\n1.IntroductionEcologyisstudiedatmanydifferentscales—microcosms,mesocosms,wholeecosystems,andland-scapes.Whole-ecosystemstudiesaredefinedhereasinsituecologicalstudiesofsuchaspatialandtemporalscaleastoincludemostifnotallprocessesoftheecosystem.Theimportanceofwhole-ecosystemstudiesismorethanjustlargesize.\nAwhole-ecosystemstudypurposefullydoesnotsimplifyanecosystemtoderivecauseandeffectmoreeasily;itattemptstoincludemanymorepathwaysandfeedbacksinthesystemthandosimplersystems.\nTheoriesnowcalledself-organization,self-design,ecosystemengineering,andpracticessuchasecologicalengineering,adaptiveresearchandecosystemmodelingemergedfromwhole-ecosystemstudies;theimpactofwhole-ecosystemresearchontheteachingofecologyhasbeenenormous.\nTheprinciplesofself-organizationandself-designarekeytowhole-ecosystemstudiesandoftendonotoccuratsmallerspaceandtimescales.Ecologicalfeedbackcausedbyorganisms(conceptsrediscoveredasecosystemengineersandtop-downcontrol),pulsescausedbyeventssuchasfireandfloods,andemergentecosystempropertiescausedbyhumanwastes,recycling,andhydrologicmodificationarekeyaspectsofthesestudies.\nreluctantlyconcludedthat:“whole-ecosystemexperimentsappeartobelosingfavorbecausetheyoftencannotbeexactlyreplicatedandareexpensiveanddifficulttoexecute,leadingtomanyecologiststofavorsmallscalesinordertoobtainthesatisfactionofstatisticalconfidence.”\n2.H.T.Odumandwhole-ecosystemstudies2.1.Texasshallowbayenclosure(1962–1963)Thedropnetapproachwasdiscontinuedwhenthecontractexpired,buttheapproachforquantifyingfishbiomassinadeepcoastalsystemwasaninnovativeattempttotrywhole-ecosystemsamplingwherenoonehadattempteditpreviously.\n2.2.Tropicalrainforestenclosure(1964–1967)2.3.Multi-seedingexperimentalestuarineponds(1968–1971)Estuarinepondswerebuilttoinvestigateecologicalchangesasthepondsreceivedsecondarilytreatedmunicipalwastewatersmixedwithsaltwater.Formally,thequestionbeingaskedwas“whethertheself-organizationprocess[ofspeciesarrangements]occursreadilytherewithnewconditionsfromwastewaterinfluenceandhowmuchtimeisrequired”\n2.4.WetlandsforrecyclingdomesticwastewaterinFlorida(1973–1978)nitrogenandphosphorusconcentrationsinthefoliageandbranchesofthetreesincreasedaswastewaterwasaddedanddecreasedagainafterthetreatmentstopped.\n4.Whole-ecosystemstudies—limitationsandadvantagesWhole-ecosystemstudiesandexperimentshavethedisadvantageofthelackofreplicationandthecostofdevelopmentandmaintenanceofthestudyorexperiment.ThetimeneededisusuallybeyondthatprovidedbyaresearchgrantingorganizationsuchastheNationalScienceFoundation(exceptionsaretheLong-TermEcosystemResearch(LTER)projects)andoftenbeyondaPh.D.student’stenureatauniversity.Theadvantagesarethattheentireecosystemispresentinthestudyandthattherearemoreopportunitiesforinteractandadaptiveresearch.Furthermore,incomparisonwithsmall-scaleexperimentsthatmayisolatecauseandeffectoneparameteratatime,theresultsachievedinawhole-ecosystemstudycouldbeclosertorealismthanthoseobtainedfromsimplifiedsmall-scalesystems.\n能值理论与分析方法(自学)\n专题讨论:群落生态及生态系统水平上的实验研究方法(4学时)例如:围隔实验(enclosuretest);受控生态系统;能值理论与分析方法;